100 research outputs found

    Probabilistic Bag-Of-Hyperlinks Model for Entity Linking

    Full text link
    Many fundamental problems in natural language processing rely on determining what entities appear in a given text. Commonly referenced as entity linking, this step is a fundamental component of many NLP tasks such as text understanding, automatic summarization, semantic search or machine translation. Name ambiguity, word polysemy, context dependencies and a heavy-tailed distribution of entities contribute to the complexity of this problem. We here propose a probabilistic approach that makes use of an effective graphical model to perform collective entity disambiguation. Input mentions (i.e.,~linkable token spans) are disambiguated jointly across an entire document by combining a document-level prior of entity co-occurrences with local information captured from mentions and their surrounding context. The model is based on simple sufficient statistics extracted from data, thus relying on few parameters to be learned. Our method does not require extensive feature engineering, nor an expensive training procedure. We use loopy belief propagation to perform approximate inference. The low complexity of our model makes this step sufficiently fast for real-time usage. We demonstrate the accuracy of our approach on a wide range of benchmark datasets, showing that it matches, and in many cases outperforms, existing state-of-the-art methods

    The Double Pulsar Eclipses I: Phenomenology and Multi-frequency Analysis

    Get PDF
    The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise around conjunction when the radio waves emitted by pulsar A are absorbed as they propagate through the magnetosphere of its companion pulsar B. These eclipses offer a unique opportunity to probe directly the magnetospheric structure and the plasma properties of pulsar B. We have performed a comprehensive analysis of the eclipse phenomenology using multi-frequency radio observations obtained with the Green Bank Telescope. We have characterized the periodic flux modulations previously discovered at 820 MHz by McLaughlin et al., and investigated the radio frequency dependence of the duration and depth of the eclipses. Based on their weak radio frequency evolution, we conclude that the plasma in pulsar B's magnetosphere requires a large multiplicity factor (~ 10^5). We also found that, as expected, flux modulations are present at all radio frequencies in which eclipses can be detected. Their complex behavior is consistent with the confinement of the absorbing plasma in the dipolar magnetic field of pulsar B as suggested by Lyutikov & Thompson and such a geometric connection explains that the observed periodicity is harmonically related to pulsar B's spin frequency. We observe that the eclipses require a sharp transition region beyond which the plasma density drops off abruptly. Such a region defines a plasmasphere which would be well inside the magnetospheric boundary of an undisturbed pulsar. It is also two times smaller than the expected standoff radius calculated using the balance of the wind pressure from pulsar A and the nominally estimated magnetic pressure of pulsar B.Comment: 9 pages, 7 figures, 3 tables, ApJ in pres

    The Wisconsin Plasma Astrophysics Laboratory

    Full text link
    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries that mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m3^3, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of Te5 T_{e}\approx5 to 2020 eV and ne1011n_{e}\approx10^{11} to 5×10125\times10^{12} cm3^{-3} provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.Comment: 21 pages, 12 figures, 2 table

    On the Wake Structure in Streaming Complex Plasmas

    Get PDF
    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of the present publication is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function, and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and non-linear effects. The applicability of these two approaches is addressed

    Radiation of electrons in Weibel-generated fields: a general case

    Full text link
    Weibel instability turns out to be the a ubiquitous phenomenon in High-Energy Density environments, ranging from astrophysical sources, e.g., gamma-ray bursts, to laboratory experiments involving laser-produced plasmas. Relativistic particles (electrons) radiate in the Weibel-produced magnetic fields in the Jitter regime. Conventionally, in this regime, the particle deflections are considered to be smaller than the relativistic beaming angle of 1/γ\gamma (γ\gamma being the Lorentz factor of an emitting particle) and the particle distribution is assumed to be isotropic. This is a relatively idealized situation as far as lab experiments are concerned. We relax the assumption of the isotropy of radiating particle distribution and present the extension of the jitter theory amenable for comparisons with experimental data.Comment: Proceedings of International Conference on HEDP/HEDLA-0

    Nonlinear dynamics of magnetohydrodynamic flows of heavy fluid over an arbitrary surface in shallow water approximation

    Full text link
    The magnetohydrodynamic equations system for heavy fluid over an arbitrary surface in shallow water approximation is studied in the present paper. It is shown that simple wave solutions exist only for underlying surfaces that are slopes of constant inclination. All self-similar discontinuous and continuous solutions are found. The exact explicit solutions of initial discontinuity decay problem over a flat plane and a slope are found. It is shown that the initial discontinuity decay solution is represented by one of five possible wave configurations. For each configuration the necessary and sufficient conditions for its realization are found. The change of dependent and independent variables transforming the initial equations over a slope to those over a flat plane is found.Comment: 43 pages, submitted to Theoretical and Computational Fluid Dynamic

    The theory of pulsar winds and nebulae

    Full text link
    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.Comment: 33 pages, to appear in Springer Lecture Notes on "Neutron stars and pulsars, 40 years after the discovery", ed W.Becke

    PIC simulations of the Thermal Anisotropy-Driven Weibel Instability: Field growth and phase space evolution upon saturation

    Full text link
    The Weibel instability is investigated with PIC simulations of an initially unmagnetized and spatially uniform electron plasma. This instability, which is driven by the thermally anisotropic electron distribution, generates electromagnetic waves with wave vectors perpendicular to the direction of the higher temperature. Two simulations are performed: A 2D simulation, with a simulation plane that includes the direction of higher temperature, demonstrates that the wave spectrum is initially confined to one dimension. The electric field components in the simulation plane generated by the instability equalize at the end of the simulation through a secondary instability. A 1D PIC simulation with a high resolution, where the simulation box is aligned with the wave vectors of the growing waves, reveals details of the electron phase space distribution and permits a comparison of the magnetic and electric fields when the instability saturates. It is shown that the electrostatic field is driven by the magnetic pressure gradient and that it and the magnetic field redistribute the electrons in space.Comment: Plasma Phys Controll Fusion, in press (to appear in june 2009

    GRB Fireball Physics: Prompt and Early Emission

    Full text link
    We review the fireball shock model of gamma-ray burst prompt and early afterglow emission in light of rapid follow-up measurements made and enabled by the multi-wavelength Swift satellite. These observations are leading to a reappraisal and expansion of the previous standard view of the GRB and its fireball. New information on the behavior of the burst and afterglow on minutes to hour timescales has led, among other results, to the discovery and follow-up of short GRB afterglows, the opening up of the z>6 redshift range, and the first prompt multi-wavelength observations of a long GRB-supernova. We discuss the salient observational results and some associated theoretical issues.Comment: 23 pages. Published in the New Journal of Physics Focus Issue, "Focus on Gamma-Ray Bursts in the Swift Era" (Eds. D. H. Hartmann, C. D. Dermer & J. Greiner). V2: Minor change

    A faint optical flash in dust-obscured GRB 080603A - implications for GRB prompt emission mechanisms

    Get PDF
    We report the detection of a faint optical flash by the 2-m Faulkes Telescope North simultaneously with the second of two prompt gamma-ray pulses in INTEGRAL gamma-ray burst (GRB) 080603A, beginning at t_rest = 37 s after the onset of the GRB. This optical flash appears to be distinct from the subsequent emerging afterglow emission, for which we present comprehensive broadband radio to X-ray light curves to 13 days post-burst and rigorously test the standard fireball model. The intrinsic extinction toward GRB 080603A is high (A_V,z = 0.8 mag), and the well-sampled X-ray-to-near-infrared spectral energy distribution is interesting in requiring an LMC2 extinction profile, in contrast to the majority of GRBs. Comparison of the gamma-ray and extinction-corrected optical flux densities of the flash rules out an inverse-Compton origin for the prompt gamma-rays; instead, we suggest that the optical flash could originate from the inhomogeneity of the relativistic flow. In this scenario, a large velocity irregularity in the flow produces the prompt gamma-rays, followed by a milder internal shock at a larger radius that would cause the optical flash. Flat gamma-ray spectra, roughly F propto nu^-0.1, are observed in many GRBs. If the flat spectrum extends down to the optical band in GRB 080603A, the optical flare could be explained as the low-energy tail of the gamma-ray emission. If this is indeed the case, it provides an important clue to understanding the nature of the emission process in the prompt phase of GRBs and highlights the importance of deep (R> 20 mag), rapid follow-up observations capable of detecting faint, prompt optical emission.Comment: 22 pages, 11 figures, accepted to MNRA
    corecore